- Why Performance Modeling
- System Description
- Model Description
- Initial Results
- Future Plans

WHY PERFORMANCE MODELING

- Risk Mitigation Approach
- Early Identification of <u>System</u> Performance Problems
- Provides Basis of Design Choices & Evaluation of Performance Requirements
- Provides Focus for Performance Testing
- Becomes Basis of Capacity Planning During O&M Phase

- Why Performance Modeling
- System Description
- Model Description
- Initial Results
- Future Plans

SYSTEM DESCRIPTION

- Information Sources
- Physical Architecture
- Hardware Design
- Software Design
- System Threads
- System Overhead

INFORMATION SOURCES

- Physical Architecture & Hardware Design -Technical Architecture Team
- Hardware Service Rates Vendor Web Pages
- Software Design Release 1 Design Team
- Threads Top Down Architecture Team

HARDWARE CHARACTERISTICS

- CPU Execution Rates SPECint92
- Disk Seek & Rotational Delays & Transfer Rate
- Network Link Transfer Rate

SOFTWARE CI SERVICE DEMANDS

- Applications, Utilities, Middleware
- COTS, GOTS, Custom Code
- Service Demand per CI Execution
 - Processing CPU Utilization, Service Time or Instructions Executed
 - Storage I/O Amount of Data Read/Written
 - Network I/O Amount of Data Transferred

SYSTEM THREADS

- Execution Flows
- Frequencies

EXECUTION FLOWS

- Derived from TDA Threads
- Defined in terms of Software CIs
- CIs are mapped to Physical Architecture

FREQUENCIES

- Input Data Rate & Duration/Message Sizes
- Arrival Rate/Interarrival Time
- Number of Data Streams, Workstations, etc.

SYSTEM OVERHEAD

- Network Protocols TCP/IP, ISP, Ethernet, ATM
- Middleware
- System Functions
 - O/S
 - Network Management
 - Security
 - Enterprise Management

- Why Performance Modeling
- System Description
- Model Description
- Initial Results
- Future Plans

MODEL DESCRIPTION

- Modeling Methodology
- Model Components
- Model Implementation

MODELING METHODOLOGY

- Modeling Paradigm Queueing Network
- Initial Modeling Technique Analytical Queueing Theory
- Advantages Quick & Relatively Accurate
- Disadvantages
 - Mean Value, Steady-State Results Only
 - Limited in Representing Some System
 Complexity

MODEL COMPONENTS

- Node CPU & Disk Queues/Servers
- Network Link Queues/Servers
- Software CIs mapped to Node Servers
- Workloads/Threads
 - Inter-node Flows -> nodes & links
 - Intra-node Flows -> SW CIs

MODEL IMPLEMENTATION

- PC-based Queueing Network Package Performance Analysis ToolBox (PATB)
- Distributed System Templates No Programming
- 1-2 Seconds Execution Time for CCS Model on Pentium PC

- Why Performance Modeling
- System Description
- Model Description
- Initial Results
- Future Plans

INITIAL RESULTS

- Mean Value, Steady-State Performance Metrics
- Workload Delay, Component Delay, Resource Utilization
- Release 1 Performance Assessment
 - Baseline Results
 - Sensitivity Analyses

RELEASE 1 PERFORMANCE ASSESSMENT

- No Performance Problems for Release 1
 - All CPUs & Disks Utilized Less Than 20%
 - Network Links Utilized Less Than 3%
- Potential Bottlenecks
 - Firewalls
 - FEP CPUs
 - Application Server Disk

RELEASE 1 PERFORMANCE ASSESSMENT (Concluded)

- Sensitive Performance Parameters
 - Analysis Product Size
 - Disk Characteristics
 - Access Time
 - Write Buffer Size
 - Number of Striped Drives
 - Software CI Service Demand

- Why Performance Modeling
- System Description
- Model Description
- <u>Initial</u> Results
- Future Plans

FUTURE PLANS

- Analytical Model
 - Add Release 2 Functions & Threads
 - Add Network Management, Enterprise
 Management & Security Overhead
 - Modify Physical Architectural Representation to Reflect BB Data Server Changes
 - Perform Additional Sensitivity Analyses & Refine Parameters

FUTURE PLANS (Concluded)

- Discrete Event Simulation Model
 - Final Version of Physical Architecture with Full CCS Functionality & Loads
 - Being Implemented in OPNET Simulation Tool
 - Status: Paper Design Completed; Partially Implemented
- RMA Model (Reliability/Maintainability/Availability)
 - Not Enough People Bandwidth to Pursue Now